skip to main content


Search for: All records

Creators/Authors contains: "Cohen, Matthew J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Sensitivity of ecosystem productivity to climate variability is a critical component of ecosystem resilience to climate change. Variation in ecosystem sensitivity is influenced by many variables. Here we investigate the effect of bedrock lithology and weathering products on the sensitivity of ecosystem productivity to variation in climate water deficit using Bayesian statistical models. Two thirds of terrestrial ecosystems exhibit negative sensitivity, where productivity decreases with increased climate water deficit, while the other third exhibit positive sensitivity. Variation in ecosystem sensitivity is significantly affected by regolith porosity and permeability and regolith and soil thickness, indicating that lithology, through its control on water holding capacity, exerts important controls on ecosystem sensitivity. After accounting for effects of these four variables, significant differences in sensitivity remain among ecosystems on different rock types, indicating the complexity of bedrock effects. Our analysis suggests that regolith affects ecosystem sensitivity to climate change worldwide and thus their resilience. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    Rivers and streams are control points for CO2emission to the air (fCO2), with emission rates often exceeding internal metabolism (net ecosystem production, NEP). The difference is usually attributed to CO2‐supersaturated groundwater inputs from upland soil respiration and rock weathering, but this implies a terrestrial‐to‐aquatic C transfer greater than estimated by terrestrial mass balance. One explanation is that riparian zones—rich in organic and inorganic C but mostly neglected in terrestrial mass balances—contribute disproportionately tofCO2. To test this hypothesis, we measuredfCO2, NEP, and the lateral CO2contributions from both terrestrial uplands (TER) and riparian wetlands (RIP) for seven reaches in a lowland river network in Florida, USA. NEP contributed about half offCO2, but the remaining CO2emission was generally much larger than measured TER. The relative importance of RIP versus TER varied markedly between contrasting hydrogeologic settings: RIP contributed 49% offCO2where geologic confinement forced lateral drainage through riparian soils, but only 12% where unconfined karst allowed deeper groundwater flowpaths that bypassed riparian zones. On a land area basis, the narrow riparian corridor yielded far more CO2than the terrestrial uplands (33.1 vs. 1.4 g‐C m−2 yr−1), resulting in river corridors (i.e., stream channel plus adjacent wetlands, NEP + RIP) sourcing 87% offCO2to streams. Our findings imply that true terrestrial CO2subsidies to streams may be smaller than previously estimated by aquatic mass balance and highlight the importance of explicitly integrating riparian zones into the conceptual model for terrestrial‐to‐aquatic C transfer.

     
    more » « less
  3. Abstract

    Stream dissolved oxygen (DO) dynamics are an outcome of metabolic activity and subsequently regulate ecosystem functions such as in‐stream solute and sediment reactions. The synchronization of DO signals in and across stream networks is both a cause and effect of the mode and timing of these functions, but there is limited empirical evidence for network patterns of DO synchrony. We used high frequency DO measurements at 42 sites spanning five catchments and stream orders to evaluate DO signal synchrony in response to variation in light (a driver of photosynthesis) and discharge (a control on DO signal spatial extent). We hypothesized that stream network DO synchrony arises when regional controls dominate: when light inputs are synchronous and when longitudinal hydrologic connectivity is high. By complement, we predicted that DO signal synchrony decreases as light becomes more asynchronous and stream flows decline or become discontinuous. Our results supported this hypothesis: greater DO signal synchrony arose with increasing light synchrony and flow connectivity. A model including these two controls explained 70% of variation in DO synchrony. We conclude that DO synchrony patterns within‐ and across‐networks support the current paradigm of discharge and light control on stream metabolic activity. Finally, we propose that DO synchrony patterns are likely a useful prerequisite for scaling subdaily metabolism estimates to network and regional scales.

     
    more » « less
  4. To assess the distribution, frequency, and global extent of riverine hypoxia, we compiled 118 million paired dissolved oxygen (DO) and water temperature measurements from 125,158 unique locations in rivers in 93 countries and territories across the globe. The dataset also includes site characteristics derived from StreamCat, the National Hydrography and HydroAtlas datasets and proximal land cover derived from MODIS-based IGBP land cover types compiled using Google Earth Engine (GEE). 
    more » « less
  5. Abstract

    Hypoxia in coastal waters and lakes is widely recognized as a detrimental environmental issue, yet we lack a comparable understanding of hypoxia in rivers. We investigated controls on hypoxia using 118 million paired observations of dissolved oxygen (DO) concentration and water temperature in over 125,000 locations in rivers from 93 countries. We found hypoxia (DO < 2 mg L−1) in 12.6% of all river sites across 53 countries, but no consistent trend in prevalence since 1950. High‐frequency data reveal a 3‐h median duration of hypoxic events which are most likely to initiate at night. River attributes were better predictors of riverine hypoxia occurrence than watershed land cover, topography, and climate characteristics. Hypoxia was more likely to occur in warmer, smaller, and lower‐gradient rivers, particularly those draining urban or wetland land cover. Our findings suggest that riverine hypoxia and the resulting impacts on ecosystems may be more pervasive than previously assumed.

     
    more » « less
  6. null (Ed.)
  7. Abstract

    Thousands of small wetland depression features (cypress domes) dot the low‐relief karst of Big Cypress National Preserve (BICY) in South Florida, USA. We hypothesized that these wetland depressions are organized in a regular pattern, which is atypical of wetlandscapes elsewhere. Regular patterning implies the existence of coupled feedbacks operating at different spatial scales, with local wetland depression expansion (facilitation via karst dissolution) limited by competition among adjacent depressions for finite water resources (inhibition). We sought to test the hypothesis that wetlands in BICY exhibit regular patterning, and to quantify pattern properties to evaluate competing genesis mechanisms. We tested four predictions about landscape structure and geometry using high‐resolution Light Detection and Ranging elevation data from six 2.25‐km2domains across BICY. Specifically, we predicted (1) feature overdispersion resulting from competition between adjacent basins; (2) truncated wetland area distributions due to growth inhibition feedbacks; (3) periodicity in surface elevation indicating a characteristic pattern wavelength; and (4) elevation bimodality indicating distinct upland and wetland states. All four predictions were strongly supported. Depressions were significantly overdispersed and efficiently fill the landscape, generating hexagonal patterning. Wetland areas followed truncated power law scaling, indicating incremental constraints on basin expansion, in contrast to depression areas elsewhere. Variogram and radial spectrum analyses revealed clear periodicity (~150‐ to 250‐m wavelength) in surface elevations. Finally, surface elevations were consistently bimodal with elevation divergence of 10 to 40 cm. Regular patterning of wetland depressions across BICY is clear, implying long‐term biogeomorphic control on landform structure in this karst landscape.

     
    more » « less
  8. Abstract

    Wetlands provide valuable hydrological, ecological, and biogeochemical functions, both alone and in combination with other elements comprising the wetlandscape. Understanding the processes and mechanisms that drive wetlandscape functions, as well as their sensitivity to natural and man‐made alterations, requires a sound physical understanding of wetland hydrodynamics. Here, we develop and apply a single reservoir hydrologic model to a low‐relief karst wetlandscape in southwest Florida (≈103 km2of Big Cypress National Preserve) using precipitationPand potential evapotranspirationPETas climatic drivers. This simple approach captures the dynamics of storage for individual wetlands across the entire wetlandscape and accurately predicts landscape discharge. Key model insights are the importance of depth‐dependent extinction of evapotranspirationETand the negligible effects of depth‐dependent specific yield, the effects of which are diluted by landscape relief. We identify three phases of the wetlandscape hydrological regime: dry, wet‐stagnant, and wet‐flowing. The model allowed a simple steady‐state analysis, which demonstrated the sudden seasonal shift between wet‐stagnant and wet‐flowing states, indicating a consistent threshold atP ≈ PET. Notably, stage data from any single wetland appears sufficient for accurate whole‐landscape discharge prediction because of the relative homogeneity in timing and duration of local wetland hydrologic connectivity in this landscape. We also show that this method will be transferable to other wetlandscapes, where individual storage elements respond hydrologically synchronously, whereas model performance is expected to deteriorate for hydrologically more heterogeneous wetlandscapes.

     
    more » « less